Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L211
(http://iopscience.iop.org/0305-4470/10/11/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:46

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point exponents \dagger

H Eugene Stanley
Department of Physics, Boston University, Boston, Massachusetts 02215, USA

Received 21 June 1977, in final form 26 September 1977

Abstract

An effective dimensionality d_{p} is introduced for the purpose of providing a quantitative characterisation of the degree of ramification of the clusters that occur at the percolation threshold. It is found that d_{p} is directly related to percolation critical exponents, and that $1 \leqslant d_{\mathrm{p}} \leqslant d$, which in turn places bounds on certain scaling powers and critical exponents. The exponents-when renormalised according to Suzuki's 'extended universality' prescription-have an appealingly simple form in terms of d_{p}; in particular, the renormalised mean cluster size exponent is d_{p}, while both the order parameter and 'decay of correlation' exponents are given by the co-dimension $d-d_{\mathrm{p}}$.

1. Introduction

The possibility that cluster shapes near the critical point are characterised by a high degree of ramification or 'stringiness' has been discussed frequently in recent work (see, e.g., Domb et al 1975, Stauffer 1975, Quinn et al 1976, Binder 1976, Temperley 1976, Leath 1976, Domb 1976). However the precise significance of this concept is yet to be clarified, and attempts to place the qualitative feature of ramification on a fully quantitative footing have been fraught with problems. It is plausible that some features of cluster shape may be directly related to aspects of observed critical phenomena; therefore it is desirable to identify certain properties of cluster shape that have precise geometric meaning and are related unambiguously to the quantitative parameters currently used to characterise the critical point. In this Letter we propose such a property, an 'effective cluster dimensionality' $d_{\mathrm{p}} \ddagger$.

We focus our discussion here on cluster shapes near the connectivity threshold, the 'critical point' of the percolation problem; the generalisation to other systems is under investigation. To a first approximation, the percolation problem is a useful description of the condensation of f-functional monomers at the gelation threshold (Flory 1953 and references therein). In particular, the sudden condensation of a single gel mole-cule-distinguished from the molecules of the sol phase by being essentially infinite in spatial extent-is analogous to the appearance of a single infinite cluster at p_{c} in the

[^0]percolation problem. Thus to the extent that this analogy is valid, we may interpret d_{p} as an 'effective polymer dimensionality' at the gelation threshold.

We will find that d_{p} is significantly smaller than d, the system dimensionality, which is consistent with the qualitative notion that clusters near the critical point are highly ramified. In particular, we find $d_{\mathrm{p}}=2$ for the Flory theory of gelation, implying that in this closed form theory the molecules are effectively two dimensional even though they may 'fill' a three-dimensional space.

2. Definition of $d_{\mathbf{p}}$

If the incipient infinite cluster at p_{c} had the full connectivity of a d-dimensional lattice, then we would expect that for large finite clusters very near $p_{c}, \chi_{p} \sim \xi_{p}^{d}$; here χ_{p} denotes the mean number of occupied sites belonging to a cluster, and ξ_{p} denotes the mean linear dimension of a cluster \dagger. For highly ramified clusters, on the other hand, we expect $\chi_{\mathrm{p}} \ll \xi_{\mathrm{p}}^{d}$ (cf figure 1). It is of interest to enquire whether there exists a number d_{p} such that

$$
\begin{equation*}
\chi_{\mathrm{p}} \sim\left(\xi_{\mathrm{p}}\right)^{d_{\mathrm{p}}} \tag{1a}
\end{equation*}
$$

Indeed, such a number would seem to exist, since from the definitions of the critical exponents γ_{p} and ν_{p} characterising the divergence at p_{c} of χ_{p} and ξ_{p} respectively, we have

$$
\begin{equation*}
d_{\mathrm{p}}=\gamma_{\mathrm{p}} / \nu_{\mathrm{p}} \tag{1b}
\end{equation*}
$$

Note that the 'effective cluster dimensionality' d_{p} defined in (1a) should depend only on d since percolation exponents depend only on d.

3. Dependence of $\boldsymbol{d}_{\mathrm{p}}$ on \boldsymbol{d}

For $d=1$ and $d=\infty$, we know the critical exponents exactly and hence we can calculate d_{p} exactly \ddagger. We find

$$
\begin{equation*}
d_{\mathrm{p}}(1)=1, \tag{2a}
\end{equation*}
$$

which is not surprising, and

$$
\begin{equation*}
d_{\mathrm{p}}(\infty)=2 \tag{2b}
\end{equation*}
$$

[^1]

Figure 1. Computer-generated 'incipient infinite cluster' for the bond percolation problem on a 25×20 square lattice with $p=p_{c}=0.5$. Note the qualitative feature of 'ramification' or 'stringiness' of this cluster, corresponding to the fact that the effective cluster dimensionality d_{p} is less than d (for $d=2, d_{p}=1.8$). If we think of this cluster as representing a dilute magnetic system in which only a fraction p of the exchange integrals are non-zero, then it is clear that magnetic correlations will spread from one end of the lattice to another along a path that is dominated by the 'backbone bonds' (shown as full lines) rather than by the 'dangling ends' (shown as broken lines). The backbone bonds that are singly-connected are shown as bold lines while those that are multiply connected are shown as light lines. By construction, the bold lines form self-avoiding walks, and it has been conjectured that 'globally' the backbone is a SAW interpreted by 'blobs' of multiplyconnected bonds. In support of this conjecture, d_{p} is identical for both the percolation problem and the SAW problem.
which is surprising since it seems to imply that in the limit of infinite lattice dimensionality the effective cluster dimensionality is only two!

What do we expect for $1<d<\infty$? For $d=1$, our intuitive understanding of equation ($2 a$) is that the connectivity necessary for percolation is achieved only for $p=1$, and the percolation cluster therefore has $d_{\mathrm{p}}=d$. For $d>1$, we expect that the percolation cluster may have $d_{\mathrm{p}}<d$, since percolation is achieved at $p_{c}<1$. We also expect $d_{\mathrm{p}}>1$, since the cluster shape at p_{c} will be considerably more 'branched' than a simple linear chain. Thus for $d>1$, we expect that $1<d_{\mathrm{p}}<d$.

Although no exact results for percolation exponents are known for $1<d<\infty$, considerable information on cluster geometry has been obtained using the methods of low-density and high-density series expansions, direct computer simulations, positionspace renormalisation group, and renormalisation group expansions in the parameter $(6-d)$. The relevant results of this work are summarised in table 1 . From the limited information on γ_{p} and ν_{p} it is impossible to obtain accurate estimates of d_{p}, especially for $d=4,5$. However, if we make the plausible assumption that weak scaling holds (Essam and Gwilym 1971), then we can use the additional expression

$$
\begin{equation*}
d_{\mathrm{p}}=\left(2-\alpha_{\mathrm{p}}-2 \beta_{\mathrm{p}}\right) / \nu_{\mathrm{p}} \tag{3}
\end{equation*}
$$

Table 1. Summary of existing calculations that can be used to obtain numerical values for $d_{p}(d)$. Each line of the table represents a different estimate, obtained using the method shown in the first column and the critical exponent values shown in subsequent columns. Here PSRG denotes 'position space renormalisation group'.

Method and equation used	γ_{p}	$\nu_{\text {p }}$	$\alpha_{\text {p }}$	$\beta_{\text {p }}$	δ_{p}	$d_{\text {p }}$
$d=2$						
series, equation (1b)	$2 \cdot 38 \pm 0.02^{\text {a }}$	$1.34 \pm 0.02^{\text {a }}$	-	-	-	1.78 ± 0.04
(1b)	$2.43 \pm 0.03^{\text {b }}$	$1.34 \pm 0.02^{\text {a }}$	-	-	-	1.81 ± 0.05
(1b)	$2.43 \pm 0.03^{\text {b }}$		-	-	-	$1.84\left\{_{-0.05}^{+0.13}\right.$
(1b)	$2.38 \pm 0.02^{\text {a }}$	$1.32\left\{_{0.07}^{+0.02^{\text {c }}}\right.$	-	-	-	$1.80{ }_{-0.04}^{+0.12}$
(3)	-	$1.34 \pm 0 \cdot 02^{\text {a }}$	$\begin{aligned} & -0.668 \\ & \quad \pm 0.004^{\text {d }} \end{aligned}$	$\begin{aligned} & 0.138 \\ & \quad \pm 0.007^{e} \end{aligned}$	-	1.785 ± 0.04
(3)	-	$1 \cdot 32\left\{_{-0.07}^{+0.02{ }^{\text {c }}}\right.$	$\begin{aligned} & -0.668 \\ & \quad \pm 0.004^{\text {d }} \end{aligned}$	$\begin{aligned} & 0.138 \\ & \pm 0.007^{e} \end{aligned}$	-	$1.81\left\{_{-0.04}^{+0.12}\right.$
(4a)	$2 \cdot 38 \pm 0.02^{\text {a }}$	-	$\begin{aligned} & -0 \cdot 668 \\ & \quad \pm 0 \cdot 004^{\text {d }} \end{aligned}$	-	-	1.784 ± 0.02
(4a)	$2.43 \pm 0.03^{\text {b }}$	-	$\begin{aligned} & -0.668 \\ & \quad \pm 0 \cdot 004^{\text {d }} \end{aligned}$	-	-	1.82 ± 0.02
(4b)	$2.38 \pm 0.02^{\text {a }}$	-	-	$\begin{aligned} & 0.138 \\ & \quad \pm 0.007^{e} \end{aligned}$	-	1.792 ± 0.04
(4b)	$2.43 \pm 0.03^{\text {b }}$	-	-	$\begin{aligned} & 0.138 \\ & \quad \pm 0.007^{e} \end{aligned}$	-	1.796 ± 0.05
(4c)	-	-	$\begin{aligned} & -0.668 \\ & \quad \pm 0.004^{\text {d }} \end{aligned}$	$\begin{aligned} & 0.138 \\ & \quad \pm 0.007^{\mathrm{e}} \end{aligned}$	-	$\begin{aligned} & 1.793 \\ & \pm 0.016 \end{aligned}$
(4d)	-	-	-	-	$18 \cdot 0 \pm 0.75^{f}$	$1.79\left\{{ }_{-0.14}^{+0.16}\right.$
computer simulations	-	-	-	-	-	$1.78{ }^{\text {g }}$
PSRG: square; bond	-	-	-	-	$18.249^{\text {h }}$	1.792
PSRG: square; bond	-	-	-	-	-	$1.9{ }^{\text {i }}$
PSRG: triangular; site	-	-	-	-	-	$1 \cdot 68{ }^{\text {i }}$
RG (Migdal-Kadanoff): square; bond	: -	-	-	-	-	$1 \cdot 78^{\text {j }}$
ϵ expansion (5)	-	-	-	-	-	$2 \cdot 55$

$d=3$

series, equation (1b)		$1 \cdot 66 \pm 0 \cdot 07^{k}$	$\begin{gathered} 0.83+15 \Delta p_{\mathrm{c}} \\ \pm 0.01^{\mathrm{a}} \end{gathered}$	-	-	-	$2 \cdot 00 \pm 0 \cdot 11$
	(1b)	$1 \cdot 66 \pm 0 \cdot 07^{k}$	$\begin{aligned} & 0.825 \pm 50 \Delta p_{c} \\ & \pm 0.02^{\mathrm{c}} \end{aligned}$	-	-	-	$2 \cdot 01 \pm 0.22$
	(1b)	$1 \cdot 70 \pm 0 \cdot 11^{\text {a }}$	$\begin{gathered} 0.825+50 \Delta p_{\mathrm{c}} \\ \pm 0.02^{\mathrm{c}} \end{gathered}$	-	-	-	2.06 ± 0.27
	(4b)	$1.66 \pm 0.07^{\text {k }}$	-	-	0.42 ± 0.06^{1}	-	$1.992\left\{_{-0.23}^{+0.25}\right.$
	(4b)	$1 \cdot 70 \pm 0 \cdot 11^{\text {a }}$	-	-	0.42 ± 0.06^{1}	-	$2 \cdot 008\left\{^{+0.30}\right.$
	(4d)	-	-	-	-	$5 \cdot 0 \pm 0 \cdot 8^{m}$	$2 \cdot 00{ }_{-0.59}^{+0.76}$
computer	(4b)	$1 \cdot 8 \pm 0 \cdot 005^{\text {n }}$	-	-	$0.39 \pm 0.02^{\text {n }}$	-	$2.09\left\{{ }_{-0.12}^{+0.14}\right.$
ϵ expansion	(5)	-	-	-	-	-	$2 \cdot 34$

series	(4b)	$1.41 \pm 0.25^{\circ}$	-	-	0.52 ± 0.03^{n}	-	$2.30\left\{^{+0.60}\right.$
computer	(4b)	$1 \cdot 6 \pm 0 \cdot 1^{\text {n }}$	-	-	$0.52 \pm 0.03^{\text {n }}$	-	$2.43\left\{^{+0.38}\right.$
ϵ expansion	(5)	-	-	-	-	-	$2 \cdot 18$

Table 1.-continued

Method and use	quation	γ_{p}	ν_{p}	α_{p}	$\beta_{\mathfrak{p}}$	δ_{p}	d_{p}
$d=5$							
series	(4b)	$1 \cdot 25 \pm 0 \cdot 15^{\circ}$	-	-	$0.66 \pm 0.05^{\text {n }}$	-	$2 \cdot 43\left\{\begin{array}{c}\text {-0.48 } \\ -0.48\end{array}\right.$
computer	(4b)	$1 \cdot 3 \pm 0 \cdot 1^{\text {n }}$	-	-	$0 \cdot 66 \pm 0 \cdot 05^{\text {n }}$	-	$2.48\left\{{ }_{-0.36}^{+0.41}\right.$
- expansion	(5)	-	-	-	-	-	2.07
$d=6$							
series	(4b)	$1.06 \pm 0.20^{\circ}$	-	-	$0.97 \pm 0.05^{\text {n }}$	-	$2 \cdot 12\left\{{ }_{-0.56}^{+0.68}\right.$
computer	(4b)	1.00 ± 0.05^{n}	-	-	$0.97 \pm 0.05^{\text {n }}$	-	$2 \cdot 04\left\{_{-0.20}^{+0.22}\right.$
ϵ expansion	(5)	-	-	-	-	-	$2 \cdot 0$
			${ }^{\text {f }}$ Gaunt and Sykes (1976): s,b \quad k			${ }^{*}$ Sykes et al (1976d): s	
			${ }^{8}$ Mandelbrot (1977): s			${ }^{1}$ Sykes et al (1976a): b,s	
${ }^{\text {b }}$ Sykes et al (1976b): b,s ${ }^{c}$ Cox and Essam (1976): s			${ }^{\text {h }}$ Dasgupta (1976): b m ${ }^{\text {m }}$			${ }^{m}$ Gaunt (1977): s	
${ }^{\text {d }}$ Domb and Pearce (1976): b			${ }^{\text {i }}$ Reynolds et al (1977): b,s ${ }^{\text {n }}$			${ }^{\text {a }}$ Kirkpatrick (1976): s	
${ }^{\text {e }}$ Sykes et al (1976c): b,s			${ }^{\text {j }}$ Riedel et al (1977): b ${ }^{\circ}$			Gaunt et al (1976): s,b	

Further, if we believe that $d \nu_{\mathrm{p}} \geqslant 2-\alpha_{\mathrm{p}}$, then we obtain four additional expressions for d_{p} :

$$
d_{\mathrm{p}} \leqslant\left\{\begin{array}{l}
d \gamma_{\mathrm{p}} /\left(2-\alpha_{\mathrm{p}}\right) \tag{4a}\\
d \gamma_{\mathrm{p}} /\left(2 \beta_{\mathrm{p}}+\gamma_{\mathrm{p}}\right) \\
d\left(2-\alpha_{\mathrm{p}}-2 \beta_{\mathrm{p}}\right) /\left(2-\alpha_{\mathrm{p}}\right) \\
d\left(\delta_{\mathrm{p}}-1\right) /\left(\delta_{\mathrm{p}}+1\right)
\end{array}\right.
$$

where (4d) follows from the three-exponent equality $\gamma_{p}=\beta_{p}\left(\delta_{p}-1\right)$. All inequalities become equalities if strong scaling ('hyperscaling') holds, as is widely believed to occur at least for $d=2,6$. The numerical data of table 1 are consistent with the result that $d_{\mathrm{p}}<d$; in particular, it appears that $d_{\mathrm{p}}(2) \simeq 1.8$ and $d_{\mathrm{p}}(3) \simeq 2$.

The situation for $d \simeq 6$ is particularly interesting. Firstly, Toulouse (1974) has conjectured that the Bethe lattice results hold for $6 \leqslant d<\infty$, and his conjecture has received support from numerical work of Kirkpatrick (1976) and Gaunt et al (1976). Thus it is plausible that $d_{\mathrm{p}}(d)=2$ for $d>6$. Harris et al (1975) have proposed that for $d \leq 6$,

$$
\begin{equation*}
d_{\mathrm{p}}(\epsilon)=2+\epsilon / 21+\left(206 / 3^{3} 7^{3}\right) \epsilon^{2}+\mathrm{O}\left(\epsilon^{3}\right) \tag{5}
\end{equation*}
$$

where $\epsilon \equiv 6-d$; the order ϵ^{2} term was calculated by Priest and Lubensky (1976) and Amit (1976). Since as d increases, the branching possibilities should not decrease, one would intuitively expect that d_{p} is a non-decreasing function of $d \ddagger$. If this is the case, then $d_{\mathrm{p}}(\infty)=2$ is the maximum value of d_{p}. Therefore equation (5) is surprising: although it predicts $d_{\mathrm{p}}<d$ for all reasonable ϵ, it also predicts that the cluster dimensionality increases as the system dimensionality decreases (cf figure 2).

In summary, then, all available data are consistent with the conjecture that $d_{\mathrm{p}}<d$.

[^2]

Figure 2. Shown are four possible dependences of d_{p} on d. A, if the incipient infinite cluster at p_{c} (or, equivalently, the incipient gel molecule) had the full connectivity of a d-dimensional lattice, then we would expect that $d_{\mathrm{p}}=d$. B , for $d>1$, the open circles represent averages of the numerical estimates of d_{p} from table 1 (and the 'error bars' indicate the range of the estimates), while for $d=1$ there exists an exact solution. Note that $d_{\mathrm{p}} \leqslant d$, and the difference $d-d_{\mathrm{p}}$ (the co-dimension) is the Suzuki-renormalised order parameter exponent $2 \beta_{\mathrm{p}} / \nu_{\mathrm{p}}$ and the 'decay of correlation' exponent $d-2+\eta_{\mathrm{p}} . \mathrm{C}$, the Flory theory of the gelation threshold predicts that $d_{\mathrm{p}}=2$ for all d; this result is correct in the limit $d \rightarrow \infty$, and probably correct for $d \geqslant 6$ (Toulouse 1974), but it is geometrically impossible for $d<2$. Note that for $d=3$, the Flory theory is in good agreement with numerical predictions. D , the $(6-d)$ expansion proposed by Harris et al (1975) for $d \leqslant 6$.

4. Connection with the scaling hypothesis

The scaling hypothesis for the percolation functions which are analogous to thermodynamic functions was first formulated by Essam and Gwilym (1971). Here it is convenient to consider the scaling hypothesis directly for the pair connectedness $C_{2}(r, \Delta p, h)$, where h is the analogue of the magnetic field for the percolation problem, and $\Delta p \equiv p-p_{c}$. One assumes there exist three numbers b_{q}, b_{p}, and b_{h} such that for all positive λ,

$$
\begin{equation*}
S\left(\lambda^{b_{a}} q, \lambda^{b_{P}} \Delta p, \lambda^{b_{h}} h\right)=\lambda^{1-d b_{a}} S(q, \Delta p, h) \tag{6}
\end{equation*}
$$

where $S(q)$ is the spatial Fourier transform of $C_{2}(r)$. From (6) it follows that all critical exponents for functions derived from the pair connectedness can be expressed in terms of the three scaling powers b_{q}, b_{p} and b_{h}. In particular, one finds that $\nu_{\mathrm{p}}=b_{q} / b_{p}$, $-\gamma_{\mathrm{p}}=\left(1-d b_{q}\right) / b_{p}$, and $2-\eta_{\mathrm{p}}=d-b_{q}^{-1}$ in complete analogy to the thermal problem (Hankey and Stanley 1972). Hence

$$
\begin{equation*}
d_{\mathrm{p}}=2-\eta_{\mathrm{p}} \tag{7}
\end{equation*}
$$

and the expression $2-\eta_{p}$ that occurs so frequently in relations among critical exponents is given a concrete interpretation in terms of a specific 'geometric' property of the percolation threshold. While $2-\eta_{\mathrm{p}}$ is the effective dimensionality, the length scaling power b_{q}^{-1} is the effective co-dimensionality,

$$
\begin{equation*}
b_{q}^{-1}=d-d_{p} . \tag{8}
\end{equation*}
$$

The above relations follow directly from the 'weak scaling' assumption (6). If one further makes the 'strong scaling' assumption, then it follows that there are not three but only two independent scaling powers, since $b_{h}=d b_{q}-\frac{1}{2}$ (Hankey and Stanley 1972). Hence we can also relate b_{h} to $d_{\mathrm{p}}: 2 b_{h}=\left(d+d_{\mathrm{p}}\right) /\left(d-d_{\mathrm{p}}\right)$. Equivalently, $2 y_{h}=d+d_{p}$, where $y_{h}=d a_{h}$ is the usual magnetic field scaling power that occurs in thermodynamic scaling (a_{h} is defined precisely in Hankey and Stanley 1972). Therefore the inequality $1 \leqslant d_{\mathrm{p}} \leqslant d$ leads to bounds on the scaling powers:

$$
\begin{equation*}
0 \leqslant b_{a}^{-1} \leqslant d-1, \quad \frac{d+1}{d-1} \leqslant 2 b_{h} \leqslant \infty, \quad d+1 \leqslant 2 y_{h} \leqslant 2 d \tag{9a}
\end{equation*}
$$

which in turn lead to inequalities on the numerical values of the critical exponents that depend only on the length (or 'field') scaling powers:

$$
\begin{equation*}
2-d \leqslant \eta_{\mathrm{p}} \leqslant 1 \quad \text { and } \quad \frac{d+1}{d-1} \leqslant \delta_{\mathrm{p}} \leqslant \infty \tag{9b}
\end{equation*}
$$

Note that for the case $d=1,1 \leqslant d_{\mathrm{p}} \leqslant d$ becomes a strict equality, and we have, from (9), $b_{q}^{-1}=0, b_{h}=\infty, y_{h}=1, \eta_{p}=1$, and $\delta_{\mathrm{p}}=\infty$.

5. Connection with the extended universality hypothesis

Suzuki (1974) has pointed out that the apparent exceptions to the universality hypothesis are in fact not exceptions if one defines all critical exponents not through the variables q, H, and $\Delta T \equiv T-T_{\mathrm{c}}$ but rather through the variables q, H, and $\kappa \sim(\Delta T)^{\nu}$. If we carry this procedure over to the percolation problem, equation (6) becomes

$$
\begin{equation*}
S\left(\lambda q, \lambda \kappa, \lambda^{b_{h} / b_{q}} h\right)=\lambda^{-d_{p}} S(q, \kappa, h) \tag{10}
\end{equation*}
$$

and the number of independent scaling powers is reduced from three to two \dagger. It is interesting to note that if we define a second 'fractal dimensionality' $d_{\sigma}=\left(2-\alpha_{\mathrm{p}}\right) / \nu_{\mathrm{p}}$, then both scaling powers and hence all critical exponents are readily expressible as simple functions of the two fractal dimensionalities d_{σ} and d_{p}. For example, the 'Suzuki-renormalised' order parameter (or 'weight fraction') exponent $\hat{\beta} \equiv 2 \beta_{\mathrm{p}} / \nu_{\mathrm{p}}$ becomes $d_{\sigma}-d_{p}$, the mean size exponent $\hat{\gamma}=\gamma_{\mathrm{p}} / \nu_{\mathrm{p}}$ becomes d_{p}, the free energy exponent $\phi \equiv\left(2-\alpha_{\mathrm{p}}\right) / \nu_{\mathrm{p}}$ becomes d_{σ}, and the 'critical isotherm' exponents $\hat{\delta} \equiv \delta_{\mathrm{p}}$ and $\hat{\eta} \equiv\left(d-2+\eta_{\mathrm{p}}\right)$ become $\left(d_{\sigma}+d_{\mathrm{p}}\right) /\left(d_{\sigma}-d_{\mathrm{p}}\right)$ and $d-d_{\mathrm{p}}$ respectively.

The numerical value of d_{σ} remains unspecified under the weak scaling assumption (one might conjecture $d_{\sigma} \leqslant d$ by analogy with the Josephson inequality, and $d_{\sigma} \geqslant d_{\mathrm{p}}$ if $\beta_{\mathrm{p}} \geqslant 0$). However, if we make the additional assumption necessary for 'strong scaling', then $b_{h}=d b_{q}-\frac{1}{2}$; hence $d_{\sigma}=d$ and there is only a single independent parameter, d_{p}, in terms of which all renormalised critical exponents find remarkably simple expression: $\hat{\gamma}=d_{\mathrm{p}}, \hat{\beta}=\hat{\eta}=d-d_{\mathrm{p}}$ (the co-dimension), $\hat{\delta}=\left(d+d_{\mathrm{p}}\right) /\left(d-d_{\mathrm{p}}\right)$, and $\phi=d$.

Thus any two systems with identical values of d_{p} will have identical values of all 'renormalised' critical exponents provided strong scaling holds. For example, Suzuki observed that the eight-vertex model-which describes two independent Ising models on square lattices coupled by a four-spin interaction-has the same values of all renormalised critical exponents, independent of the coupling strength. This observation can be interpreted as the intuitively plausible statement that for this system the
$\dagger(10)$ follows on substituting $\kappa=(\Delta p)^{b_{q} / b_{p}}$ into (6), multiplying all scaling powers by b_{q}^{-1}, and using (8).
effective cluster dimensionality (or degree of cluster 'ramification') is independent of the coupling strength. Suzuki has also pointed out that the renormalised critical exponents are the same for the Ising model with triplet interactions as for the Ising model with pair interactions; this result can be interpreted to mean that both systems have the same effective cluster dimensionality. Finally, it should be pointed out that if two systems have the same value of d_{p}, there may be other common features. For example, Stanley et al (1976) have pointed out that d_{p} appears to be the same for the percolation and self-avoiding walk (SAw) problems, and this result has been interpreted to mean that correlations spread throughout a dilute magnet at the percolation threshold along paths that are, globally, sAW's (cf figure 1).

6. Discussion

Thus far our attention has focused on the particular definition of d_{p} given in equation (1). It is certainly legitimate to ask what would happen if we were to adopt differing definitions of d_{p}. Logically, we can alter equation (1) by changing either the length or the size functions therein. There is no a priori basis for choosing a 'best' definition of the effective cluster dimensionality, and definitions different than (1) may prove more suitable for certain applications. One alternative to (1)-which is equivalent to (1) when hyperscaling holds but gives larger numerical values for the effective cluster dimensionality-is obtained by focusing on the very large clusters. The typical length of the very large clusters diverges with the same power of ($p_{c}-p$), but the typical size s_{L} of the very large clusters may diverge faster than the mean size $\chi_{\mathrm{p}} \equiv\langle s\rangle$ of all the finite clusters, thus leading to a different value of d_{p}. Information about s_{L} can be obtained by the following argument (Stauffer 1976): assume that the mean number of s-site clusters varies with s and p according to

$$
\begin{equation*}
n_{s}(p) \sim s^{-\tau} f\left(\left(p_{c}-p\right) s^{1 / \beta \delta}\right) \tag{11}
\end{equation*}
$$

for very large s and very small $\left(p_{\mathrm{c}}-\mathrm{p}\right) / p_{\mathrm{c}}$; then in some sense a typical size s_{L} of the very large clusters described by (11) may be expected to diverge as $s_{\mathrm{L}} \sim\left(p_{\mathrm{c}}-p\right)^{-\beta \delta}$. Note that for $d>1, s_{\mathrm{L}}$ grows much more rapidly as $p \rightarrow p_{\mathrm{c}}$ than $\langle s\rangle$, since $\left.\beta \delta=\beta+\gamma\right\rangle$ γ. Defining d_{p}^{\dagger} through $s_{\mathrm{L}} \sim \xi_{\mathrm{p}}^{d_{\mathrm{p}}^{+}}$, we have \dagger

$$
\begin{equation*}
d_{\mathrm{p}}^{\dagger}=\beta_{\mathrm{p}} \delta_{\mathrm{p}} / \nu_{\mathrm{p}}=d_{\mathrm{p}}\left[\delta_{\mathrm{p}} /\left(\delta_{\mathrm{p}}-1\right)\right] \leqslant\left(d+d_{\mathrm{p}}\right) / 2 \tag{12}
\end{equation*}
$$

If strong scaling holds, the inequality becomes an equality and d_{p}^{\dagger} is fully equivalent to d_{p}, while if strong scaling does not hold, d_{p}^{\dagger} and d_{p} are related by a critical point exponent. That the mean of a sub-group differs from the mean of the entire group is not surprising; what is perhaps intriguing is that as $p \rightarrow p_{c}$ the very large clusters increase in size sufficiently faster than the mean clusters that their effective dimensionality d_{p}^{\dagger} is larger (for $d>1$) than the effective dimensionality d_{p} of the system as a whole.

It is straightforward to derive numerical values for d_{p}^{\dagger} from the information given above and in table 1. In particular, we have $d_{\mathrm{p}}^{\dagger}(d) \geqslant d_{\mathrm{p}}(d)$, with the equality holding

[^3]for $d=1$, and (from (5))
\[

$$
\begin{equation*}
d_{\mathrm{p}}^{\dagger}(\epsilon)=4-\frac{10}{21} \epsilon+\frac{103}{3^{3} 7^{3}} \epsilon^{2}+\ldots \tag{13}
\end{equation*}
$$

\]

which results in the monotonic sequence $d_{\mathrm{p}}^{\dagger}(\epsilon)=4,3.53,3 \cdot 09,2 \cdot 67$ for $d=6,5,4,3$ respectively. If strong scaling holds, then $2 b_{h}=d_{\mathrm{p}}^{\dagger} /\left(d-d_{\mathrm{p}}^{\dagger}\right)$ and $y_{h}=d_{\mathrm{p}}^{\dagger}$, while if strong scaling does not hold, no scaling power is given in terms of d_{p}^{+}alone. The 'Suzuki-renormalised' critical exponents, when expressed in terms of d_{p}^{\dagger}, are $\hat{\beta}=\hat{\eta}=$ $2\left(d-d_{\mathrm{p}}^{\dagger}\right), \hat{\gamma}=2 d_{\mathrm{p}}^{\dagger}-d$, and $\hat{\delta}=d_{\mathrm{p}}^{\dagger} /\left(d-d_{\mathrm{p}}^{\dagger}\right)$.

In conclusion, then, we have proposed an effective cluster dimensionality d_{p} that describes the shape of the clusters (molecules) present at the percolation (gelation) threshold. We showed that d_{p} is directly related to critical exponents and we then used existing information about these exponents to evaluate $d_{\mathrm{p}} ; d_{\mathrm{p}}$ depends only on d, and $1 \leqslant d_{\mathrm{p}} \leqslant d$ for all systems considered (with the equality holding only for $d=1$), which is consistent with the intuitive notion that the incipient gel molecule is highly ramified. Finally, we made connection with the scaling and extended universality hypotheses. In particular, we found that the inequality $1 \leqslant d_{\mathrm{p}} \leqslant d$ places bounds on the scaling powers and certain critical exponents, and that Suzuki's renormalised critical exponents all assume remarkably simple expressions when written in terms of d_{p}; in particular, the mean size exponent is simply d_{p} and the order parameter and 'decay of correlation' exponents are simply the co-dimension $d-d_{\mathrm{p}}$.

Acknowledgments

We wish to thank P J Reynolds, S Redner, and W Klein for many useful discussions throughout the course of this work that helped clarify many of the points involved. The remarks on d_{p}^{\dagger} were formulated after extensive discussion also with G Bishop, R J Harrison, and D Stauffer. We also wish to thank B Mandelbrot, J F Nicoll, G F Tuthill, R J Birgeneau, and M E Fisher for helpful comments on this work.

References

Amit D J 1976 J. Phys. A: Math. Gen. 9 1441-59
Besicovitch A S 1935 Math. Annln 110 321-32
Binder K 1976 Ann. Phys., NY 98 390-417
Cox M A A and Essam J W 1976 J. Phys C: Solid St. Phys. 9 3985-91
Dasgupta C 1976 Phys. Rev. B 14 1221-4
Domb C 1976 J. Phys. A: Math. Gen. 9 283-99
Domb C and Pearce C J 1976 J. Phys. A: Math. Gen. 9 L137-40
Domb C, Schneider T and Stoll E 1975 J. Phys. A: Math. Gen. 8 L90-4
Dunn A G, Essam J W and Ritchie D S 1975 J. Phys. C: Solid St. Phys. 8 4219-35
Essam J W 1972 Phase Transitions and Critical Phenomena vol. 2, eds C Domb and M S Green (London: Academic) chap. 6
Essam J W and Gwilym K M 1971 J. Phys. C: Solid St. Phys. 4 L228-31
Fisher M E and Essam J W 1961 J. Math. Phys. 2 609-19
Flory P J 1953 Principles of Polymer Chemistry (Ithaca: Cornell University Press)
Gaunt D S 1977 J. Phys. A: Math. Gen. 10 807-12
Gaunt D S and Sykes M F 1976 J. Phys. A: Math. Gen. 9 1109-16
Gaunt D S, Sykes M F and Ruskin H 1976 J. Phys. A: Math. Gen. 9 1899-911

Hankey A and Stanley H E 1972 Phys. Rev. B 6 3515-42
Harris A B, Lubensky T C, Holcomb W K and Dasgupta C 1975 Phys. Rev. Lett. 35 327-30
Hausdorff F 1919 Math. Annln 79 157-79
Kirkpatrick S 1976 Phys. Rev. Lett. 36 69-72
Klein W, Stanley H E, Redner, S and Reynolds P J 1977 Boston University Preprint
Leath P L 1976 Phys. Rev. B 14 5046-55
Mandelbrot B 1975 Les Objects Fractals (Paris, Montreal: Flammarion)
1977 to be published
Priest R G and Lubensky T C 1976 Phys. Rev. B 13 4159-71
Quinn G D, Bishop G H and Harrison R J 1976 J. Phys. A: Math. Gen. 9 L9-14
Reynolds P J, Klein W and Stanley H E 1977 J. Phys. C: Solid St. Phys. 10 L167-72
Reynolds P J, Stanley H E and Klein W 1977 J. Phys. A: Math. Gen. 10 L203-9
Riedel E K, Jayaprakash C and Wortis M 1977 Bull. Am. Phys. Soc. 22301
Stanley H E, Birgeneau R J, Reynolds P J and Nicoll J F 1976 J. Phys. C: Solid St. Phys. 9 L553-60
Stanley H E, Klein W and Reynolds P J 1977 Boston University Preprint
Stauffer D 1975 J. Phys. C: Solid St. Phys. 8 L172-7

- 1976 Z. Phys. B 25 391-9

Stauffer D S and Jayaprakash C 1977 Preprint
Suzuki M 1974 Prog. Theor. Phys. 51 1992-3
Sykes M F, Gaunt D S and Essam J W 1976a J. Phys. A: Math. Gen. 9 L43-6
Sykes M F, Gaunt D S and Glen M 1976b J. Phys. A: Math. Gen. 997-103
-_ 1976c J. Phys. A: Math. Gen. 9 725-30
—— 1976d J. Phys. A: Math. Gen. 9 1705-12
Temperley H N V 1976 J. Phys. A: Math. Gen. 9 L113-7
Toulouse G 1974 Nuovo Cim. B 23 234-40

[^0]: \dagger Work supported by the NSF and the AFOSR.
 \ddagger So far as we can tell, d_{p} is equivalent to the Hausdorff-Besicovitch dimensionality (Hausdorff 1919, Besicovitch 1935), a mathematical concept further developed and extensively applied to a wide range of systems by Mandelbrot (1975); Mandelbrot calls objects with non-integer Hausdorff-Besicovitch dimensionality 'fractals', and the Hausdorff-Besicovitch dimensionality itself he terms the 'fractal dimensionality'.

[^1]: \dagger We use the definitions of percolation functions and corresponding critical exponents exactly as in Essam (1972) with one exception: we use the notation χ_{p} instead of $S(p)$ in order to stress the parallel with thermal phase transitions-for example, for $d=1, \chi_{\mathrm{p}}=(1+p) /(1-p)$ while $\chi_{T}=(1+y) /(1-y)$, where χ_{T} is the isothermal susceptibility and $y \equiv \tanh (J / k T)$ (Reynolds et al 1977, Klein et al 1977, Stauffer and Jayaprakash 1977, Stanley et al 1977).
 \ddagger For $d=1, p_{\mathrm{c}}=1, \chi_{\mathrm{p}} \sim(1+p) /(1-p)$, and $\xi_{\mathrm{p}}^{2}=2 p /(1-p)^{2}$; hence $\gamma_{\mathrm{p}}=\nu_{\mathrm{p}}=1$. The lattice dimensionality of a Cayley tree is not well defined (it cannot be embedded in any finite-dimensional space), but it is believed that percolation exponents for the interior of a Cayley tree (Flory 1953, Fisher and Essam 1961) are those of an infinite-dimensional system. For a Cayley tree, there are no closed cycles, and the Flory theory of the gelation threshold becomes exact for this lattice; consequently the dimensionality of the incipient gel molecule is two, regardless of the system dimensionality (cf figure 2).

[^2]: \ddagger This intuition may be false, since $p_{c}(d)$ decreases with increasing d (P J Reynolds, private communication).

[^3]: \dagger Very recently Harrison, Bishop and Quinn (private communication, and to be published) have obtained expression (12) for d_{p}^{\dagger} using an elegant argument that does not explicitly involve the cluster-size scaling hypothesis. Moreover, they have confirmed (12) numerically for $d=2,3$ by direct computer simulation of large clusters near p_{c}. Earlier $d=2$ data of Leath (1976) on smaller samples are also consistent with (12) (Leath interprets his data as being consistent with a fractal dimensionality of two).

