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LE”ER TO THE EDITOR 

Cluster shapes at the percolation threshold: an effective 
cluster dimensionality and its connection with critical-point 
exponents? 

H Eugene Stanley 
Department of Physics, Boston University, Boston, Massachusetts 02215, USA 

Received 21 June 1977, in final form 26 September 1977 

AbstrPct. An effective dimensionality d, is introduced for the purpose of providing a 
quantitative characterisation of the degree of ramification of the clusters that occur at the 
percolation threshold. It is found that d, is directly related to percolation critical 
exponents, and that 1 S d, d, which in turn places bounds on certain scaling powers and 
critical exponents. The exponents-when renormalised according to Suzuki’s ‘extended 
universality’ prescription-have an appealingly simple form in terms of d,; in particular, 
the renormalised mean cluster size exponent is d,, while both the order parameter and 
‘decay of correlation’ exponents are given by the co-dimension d -d,. 

1. Introduction 

The possibility that cluster shapes near the critical point are characterised by a high 
degree of ramification or ‘stringiness’ has been discussed frequently in recent work 
(see, e.g., Domb et a1 1975, Stauffer 1975, Quinn et a1 1976, Binder 1976, Temperley 
1976, Leath 1976, Domb 1976). However the precise significance of this concept is 
yet to be clarified, and attempts to place the qualitative feature of ramification on a 
fully quantitative footing have been fraught with problems. It is plausible that some 
features of cluster shape may be directly related to aspects of observed critical 
phenomena; therefore it is desirable to identify certain properties of cluster shape that 
have precise geometric meaning and are related unambiguously to the quantitative 
parameters currently used to characterise the critical point. In this Letter we propose 
such a property, an ‘effective cluster dimensionality’ d,S. 

We focus our discussion here on cluster shapes near the connectivity threshold, the 
‘critical point’ of the percolation problem; the generalisation to other systems is under 
investigation. To a first approximation, the percolation problem is a useful description 
of the condensation of f-functional monomers at the gelation threshold (Flory 1953 
and references therein). In particular, the sudden condensation of a single gel mole- 
cule-distinguished from the molecules of the sol phase by being essentially infinite in 
spatial extent-is analogous to the appearance of a single infinite cluster at pc  in the 

t Work supported by the NSF and the AFOSR. 
‘4 So far as we can tell, d, is equivalent to the HausdorfT-Besicovitch dimensionality (Hausdod 1919, 
Besicovitch 1935), a mathematical concept further developed and extensively applied to a wide range of 
systems by Mandelbrot (1975); Mandelbrot calls objects with non-integer HausdorfT-Besicovitch dimen- 
sionality ‘fractals’, and the HausdorfT-Besicovitch dimensionality itself he terms the ‘fractal dimensionality’. 
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percolation problem. Thus to the extent that this analogy is valid, we may interpret d, 
as an ‘effective polymer dimensionality’ at the gelation threshold. 

We will find that d, is significantly smaller than d, the system dimensionality, which 
is consistent with the qualitative notion that clusters near the critical point are highly 
ramified. In particular, we find d, = 2 for the Flory theory of gelation, implying that in 
this closed form theory the molecules are effectively two dimensional even though 
they may ‘fill’ a three-dimensional space. 

2. Definition of d,  

If the incipient infinite cluster at p c  had the full connectivity of a d-dimensional lattice, 
then we would expect that for large finite clusters very near pc ,  ,yp-.$; here xP 
denotes the mean number of occupied sites belonging to a cluster, and 6, denotes the 
mean linear dimension of a cluster?. For highly ramified clusters, on the other hand, 
we expect xP<<(pd (d figure 1). It is of interest to enquire whether there exists a 
number d,  such that 

x p  - (tp>dp. ( l a )  

Indeed, such a number would seem to exist, since from the definitions of the critical 
exponents yp and up characterising the divergence at pc  of xp and tP respectively, we 
have 

d,  = Yp/V,. (16) 

Note that the ‘effective cluster dimensionality’ d, defined in ( l a )  should depend only 
on d since percolation exponents depend only on d. 

3. Dependence of d,  on d 

For d = 1 and d = 00, we know the critical exponents exactly and hence we can 
calculate d, exactly$. We find 

d,(U = 1, (2a 1 

which is not surprising, and 

dp(0O) = 2, (2b) 

t We use the definitions of percolation functions and corresponding critical exponents exactly as in Essam 
(1972) with one exception: we use the notation xp instead of S ( p )  in order to stress the parallel with thermal 
phase transitions-for example, for d = 1, xp = (1 +p)/(l - p )  while xT = (1 +y) / ( l  -y), where xT is the 
isothermal susceptibility and y =tanh(J/kT) (Reynolds et a1 1977, Klein et a1 1977, Stauffer and Jay- 
aprakash 1977, Stanley et a1 1977). 
$For d = 1, pc= 1, ,yp-(l +p)/(l - p ) ,  and .$= 2p/(l - P ) ~ ;  hence yp= vP= 1. The lattice dimensionality 
of a Cayley tree is not well defined (it cannot be embedded in any finite-dimensional space), but it is 
believed that percolation exponents for the interior of a Cayley tree (Flory 1953, Fisher.and Essam 1961) 
are those of an infinite-dimensional system. For a Cayley tree, there are no closed cycles, and the Flory 
theory of the gelation threshold becomes exact for this lattice; consequently the dimensionality of the 
incipient gel molecule is two, regardless of the system dimensionality (cf figure 2). 
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Figure 1. Computer-generated ‘incipient infinite cluster’ for the bond percolation pro- 
blem on a 25x20  square lattice with p = p c = 0 . 5 .  Note the qualitative feature of 
‘ramification’ or ‘stringiness’ of this cluster, corresponding to the fact that the effective 
cluster dimensionality d, is less than d (for d = 2, d,- 1.8). If we think of this cluster as 
representing a dilute magnetic system in which only a fraction p of the exchange integrals 
are non-zero, then it is clear that magnetic correlations will spread from one end of the 
lattice to another along a path that is dominated by the ‘backbone bonds’ (shown as full 
lines) rather than by the ‘dangling ends’ (shown as broken lines). The backbone bonds that 
are singly-connected are shown as bold lines while those that are multiply connected are 
shown as light lines. By construction, the bold lines form self-avoiding walks, and it has 
been conjectured that ‘globally’ the backbone is a SAW interpreted by ‘blobs’ of multiply- 
connected bonds. In support of this conjecture, d, is identical for both the percolation 
problem and the SAW problem. 

which is surprising since it seems to imply that in the limit of infinite lattice dimen- 
sionality the effective cluster dimensionality is only two! 

What do we expect for 1 < d  <a? For d = 1, our intuitive understanding of 
equation (2a)  is that the connectivity necessary for percolation is achieved only for 
p = 1, and the percolation cluster therefore has d ,  = d.  For d > 1, we expect that the 
percolation cluster may have d ,  < d, since percolation is achieved at pc  C 1. We also 
expect d ,  > 1, since the cluster shape at pc  will be considerably more ‘branched’ than a 
simple linear chain. Thus for d > 1, we expect that 1 < d ,  < d. 

Although no exact results for percolation exponents are known for 1 < d  < 00, 

considerable information on cluster geometry has been obtained using the methods of 
low-density and high-density series expansions, direct computer simulations, position- 
space renormalisation group, and renormalisation group expansions in the parameter 
(6 - d). The relevant results of this work are summarised in table 1. From the limited 
information on yp and Y, it is impossible to obtain accurate estimates of d,, especially 
for d = 4, 5.  However, if we make the plausible assumption that weak scaling holds 
(Essam and Gwilym 1971), then we can use the additional expression 

d ,  = ( 2 - a , - 2 P p ) / v , .  (3) 
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Table 1. Summary of existing calculations that can be used to obtain numerical values for 
dp(d). Each line of the table represents a different estimate, obtained using the method 
shown in the first column and the critical exponent values shown in subsequent columns. 
Here PSRG denotes 'position space renormalisation group'. 

~~~ ~ 

Method and equation yp YP QP B P  8 ,  dP 
used 

d = 2  

1.78 f 0.04 
- - 1.81f0.05 

series, equation (16) 2.38f0.02" 1.34f0.02" - - - 
(16) 2.43f0.03b 1.34f0.02" - 

(3) - 1.34f0.02' -0.668 0.138 - 

(16) 2.43f0.03b 1.32{?:.::' - - - 1.84{+::,!,: 
(16) 2.38 f 0*02* 1.32{?::$' - - - 1.80(?g:z 

1.785f0.04 
f0.004d f 0.007' 

f 0.004d f 0.007' 

f 0.004d 

f 0.004d 

(3) - 1.32{?::::' -0.668 0.138 - 1.81{$z 

1.784 f 0.02 (4a) 2.38 f 0.02" - -0.668 - - 

(4a) 2.43 f 0 ~ 0 3 ~  - -0.668 - - 

(46) 2.38f0.02' - - 0.138 - 

(46) 2 .43+~0.03~ - - 0.138 - 

(4c ) 

( 4 4  

1.82f0.02 

1.792f0.04 

1.796f0.05 
f 0.007' 

f 0.007' 
- -0.668 0.138 - 1.793 

f 0.004d f 04"" f0.016 
- - - 18.0f 0.75' 1.79{:00::46 

- 

- 
- - 1.78' 
- 18.249h 1.792 

- - computer simulations - 
PSRG: square; bond - - - 
PSRG: square; bond - 
PSRG: triangular; site - 
RG (Migdal-Kadanoff): - - - - 

E expansion ( 5 )  - - 

- 1.9' 
- 1.68' 
- 1.78' 

- 2.55 

- - - 
- - - 

square; bond 
- - 

d = 3  

series, equation (16) 1.66f0.07k 0 4 3 +  15Apc 
f0.01" - - - 2 ~ 0 0 f 0 ~ 1 1  

(16) 1.66*0.07k 0.825f5OApc 
- - 2.01 f 0.22 f 0.02' - 

(16) 1.70f 0.1 1' 0.825 +SOAP= 
- - 2.06f 0.27 f 0.02' - 

(46) 1 . 6 6 ~ t 0 . 0 7 ~  - - 0.42 f 0.06' - 1.992{'::$: 
(46) 1~70*0.11" - - 0.42 f 0.06' - 2.008{+:::$ 
( 4 4  - - - - 5*0* 0.8" 2*00(?:::: 

computer (46) 1.8 f 0.005" - - 0.39 * 0.02" - 2.09{::::: 
- 2.34 - - E expansion (5) - - 

d = 4  

series (46) 1.41f0.25" - - 0.52f0.03" - 2*30(+:::: 
- 0.52 f 0.03" - 2*43{ ?:;:: computer (46) 1.6fO-1" - 

e expansion (5) - - - 2.18 - - 
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Table l.-continued 

Method and equation yP VP LlP B P  S P  dP 
used 

d = 5  

series (46) 1.25ztO.15" - - 0.66* 0.05" - 2*43{ 
computer (46) 1.3k0.1" - - 0.66 * 0.05" - 2.48{ ?::;: 

- - - - 2-07 expansion (5) - 

d = 6  

series (4b) 1.06*0.20" - - 0.97 f 0.05" - 2,12{+:::: 

Q expansion (5) - - - - 
computer (46) 1.00*0.05" - - 0.97 * 0.05" - 2.04{ ::::; 

- 2.0  
~~~ ~~ 

* Dunn et a1 (1975): b Gaunt and Sykes (1976): s,b 
Mandelbrot (1977): s 
Dasgupta (1976): b 

' Reynolds etal (1977): b,s 
' Riedel etal (1977): b 

' Sykes et a1 (1976d): s 
' Sykes et a1 (1976~) :  6,s 
mGaunt (1977): s 
" Kirkpatrick (1976): s 

Sykes et a1 (1976b): b,s 
Cox and h a m  (1976): s 
Domb and Pearce (1976): b 

e Sykes et a1 (19764: b,s Gaunt et a1 (1976): s,b 

Further, if we believe that dv, 3 2 - a,, then we obtain four additional expressions for 
d,: 

where ( 4 4  follows from the three-exponent equality yp = pp(Sp - 1). All inequalities 
become equalities if strong scaling ('hyperscaling') holds, as is widely believed to occur 
at least for d = 2, 6. The numerical data of table 1 are consistent with the result that 
d, < d ;  in particular, it appears that d,(2) = 1.8 and d,(3) = 2. 

The situation for d = 6 is particularly interesting. Firstly, Toulouse (1974) has 
conjectured that the Bethe lattice results hold for 6 S d C 00, and his conjecture has 
received support from numerical work of Kirkpatrick (1976) and Gaunt er a1 (1976). 
Thus it is plausible that d,(d) = 2 for d > 6. Harris eta1 (1975) have proposed that for 
d 5 6 ,  

( 5 )  
where E = 6 - d ;  the order e* term was calculated by Priest and Lubensky (1976) and 
Amit (1976). Since as d increases, the branching possibilities should not decrease, 
one would intuitively expect that d, is a non-decreasing function of dS. If this is the 
case, then d,(oo) = 2 is the maximum value of d,. Therefore equation (5 )  is surprising: 
although it predicts d,<d for all reasonable E, it also predicts that the cluster 
dimensionality increases as the system dimensionality decreases (cf figure 2). 

In summary, then, all available data are consistent with the conjecture that d, < d. 

d , ( ~ )  = 2 + ~ / 2 1 +  (206/3373)e2 + O ( E ~ )  

$ This intuition may be false, since p&) decreases with increasing d (P J Reynolds, private communication). 
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Figure 2. Shown are four possible dependences of d ,  on d.  A, if the incipient infinite 
cluster at pc (or, equivalently, the incipient gel molecule) had the full connectivity of a 
d-dimensional lattice, then we would expect that d ,  = d. B, for d > 1, the open circles 
represent averages of the numerical estimates of d ,  from table 1 (and the ‘error bars’ 
indicate the range of the estimates), while for d = 1 there exists an exact solution. Note 
that d , c d ,  and the difference d - d ,  (the co-dimension) is the Suzuki-renormalised order 
parameter exponent 2p,/v, and the ‘decay of correlation’ exponent d - 2 + qp. C, the 
Flory theory of the gelation threshold predicts that d ,  = 2 for all d ;  this result is correct in 
the limit d + a ,  and probably correct for d 3 6  (Toulouse 1974), but it is geometrically 
impossible for d < 2. Note that for d = 3, the Flory theory is in good agreement with 
numerical predictions. D, the ( 6 - d )  expansion proposed by Hams et a1 (1975) for d 5 6 .  

4. Connection with the scaling hypothesis 

The scaling hypothesis for the percolation functions which are analogous to ther- 
modynamic functions was first formulated by Essam and Gwilym (1971). Here it is 
convenient to consider the scaling hypothesis directly for the pair connectedness 
C2(r, Ap, h), where h is the analogue of the magnetic field for the percolation problem, 
and Ap = p  -pc .  One assumes there exist three numbers b,, bp, and bh such that for all 
positive A, 

S(Abqq,AbpAp,Abhh)=A1-dbqS(q, Ap, h )  (6)  
where S(q)  is the spatial Fourier transform of C&). From (6) it follows that all critical 
exponents for functions derived from the pair connectedness can be expressed in 
terms of the three scaling powers b , b and bh. In particular, one finds that vp = bq/bp, 
-yp = (1 - db,)/b,, and 2 - 7, = d b:’ in complete analogy to the thermal problem 
(Hankey and Stanley 1972). Hence 

d,=  2- 77, (7) 
and the expression 2-77, that occurs so frequently in relations among critical 
exponents is given a concrete interpretation in terms of a specific ‘geometric’ property 
of the percolation threshold. While 2-vP is the effective dimensionality, the length 
scaling power b i l  is the effective co -dimensionality, 

b i l  = d - d,. (8)  
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The above relations follow directly from the ‘weak scaling’ assumption (6). If one 
further makes the ‘strong scaling’ assumption, then it follows that there are not three 
but only two independent scaling powers, since bh =db, -4 (Hankey and Stanley 
1972). Hence we can also relate b h  to d,: 2bh = ( d + d , ) / ( d - d , ) .  Equivalently, 
2yh = d +d,, where Y h  = dah is the usual magnetic field scaling power that occurs in 
thermodynamic scaling ( a h  is defined precisely in Hankey and Stanley 1972). There- 
fore the inequality 1 < d ,  < d leads to bounds on the scaling powers: 

O S  bq-l Q d - 1 ,  

which in turn lead to inequalities on the numerical values of the critical exponents that 
depend only on the length (or ‘field’) scaling powers: 

2 - d  < 7,s 1 and - S S , S C O .  
d + l  
d - 1  

Note that for the case d = 1, 1 d, < d becomes a strict equality, and we have, from 
(g), b i l = O ,  bh=CO, y h  =I, 7,’ 1 ,  and S,=CO. 

5. Connection with the extended universality hypothesis 

Suzuki (1974) has pointed out that the apparent exceptions to the universality hypo- 
thesis are in fact not exceptions if one defines all critical exponents not through the 
variables q, H, and AT T - T, but rather through the variables q, H, and K - (AT)”. 
If we carry this procedure over to the percolation problem, equation (6) becomes 

S(Aq, AK,  A bJbqh) = A-4S(q, K ,  h )  (10) 

and the number of independent scaling powers is reduced from three to two?. It is 
interesting to note that if we define a second ‘fractal dimensionality’ d, = (2 - ap)/vp, 
then both scaling powers and hence all critical exponents are readily expressible as 
simple functions of the two fractal dimensionalities d, and d,. For example, the 
‘Suzuki-renormalised’ order parameter (or ‘weight fraction’) exponent $ = 2p, /v ,  
becomes d, -dp, the mean size exponent 9 = yp/vp becomes d,, the free energy 
exponent (b = (2  - ap)/vp becomes d, and the ‘critical isotherm’ exponents 8 = S, and 
9 = (d - 2 + 7,) become (d, + d,)/(d, - d,) and d - d ,  respectively. 

The numerical value of d, remains unspecified under the weak scaling assumption 
(one might conjecture d,  s d by analogy with the Josephson inequality, and d,  3 d ,  if 
pp 3 0). However, if we make the additional assumption necessary for ‘strong scaling’, 
then bh = db, -4; hence d, = d and there is only a single independent parameter, d,, 
in terms of wtich all renormalised critical exponents find remarkably simple expres- 
sion: 9 = d,, p = 9 = d - d ,  (the co-dimension), 8 = (d + d,)/(d -d,), and (b = d.  

Thus any two systems with identical values of d, will have identical values of all 
‘renormalised’ critical exponents provided strong scaling holds. For example, Suzuki 
observed that the eight-vertex model-which describes two independent Ising models 
on square lattices coupled by a four-spin interaction-has the same values of all 
renormalised critical exponents, independent of the coupling strength. This obser- 
vation can be interpreted as the intuitively plausible statement that for this system the 

t (10) follows on substituting K = (Ap)’d’p into (6), multiplying all scaling powers by b;’, and using (8). 
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effective cluster dimensionality (or degree of cluster ‘ramification’) is independent of 
the coupling strength. Suzuki has also pointed out that the renormalised critical 
exponents are the same for the Ising model with triplet interactions as for the Ising 
model with pair interactions; this result can be interpreted to mean that both systems 
have the same effective cluster dimensionality. Finally, it should be pointed out that if 
two systems have the same value of d,, there may be other common features. For 
example, Stanley et ul (1976) have pointed out that d ,  appears to be the same for the 
percolation and self-avoiding walk (SAW) problems, and this result has been inter- 
preted to mean that correlations spread throughout a dilute magnet at the percolation 
threshold along paths that are, globally, SAW’S (cf figure 1). 

6. Discussion 

Thus far our attention has focused on the particular definition of d ,  given in equation 
(1). It is certainly legitimate to ask what would happen if we were to adopt differing 
definitions of d,. Logically, we can alter equation (1) by changing either the length or 
the size functions therein. There is no a priori basis for choosing a ‘best’ definition of 
the effective cluster dimensionality, and definitions different than (1) may prove more 
suitable for certain applications. One alternative to (1)-which is equivalent to (1) 
when hyperscaling holds but gives larger numerical values for the effective cluster 
dimensionality-is obtained by focusing on the very large clusters. The typical length 
of the very large clusters diverges with the same power of ( p c - p ) ,  but the typical size 
sL of the very large clusters may diverge faster than the mean size xp=(s) of all the 
finite clusters, thus leading to a different value of d,. Information about sL can be 
obtained by the following argument (Stauffer 1976): assume that the mean number of 
s-site clusters varies with s and p according to 

ns(p> -s-Tf((pc--P)s l’Ba) (1 1) 
for very large s and very small (pc-p)/pc; then in some sense a typical size sL of the 
very large clusters described by (1 1) may be expected to diverge as SL - ( p c  -p) -” .  
Note that for d > 1, sL grows much more rapidly as p + p c  than (s), since pS = p + y > 
y. Defining d i  through sL - &$, we havet 

dp’ = pp6,/Vp = dp[8,/(Sp - l)] s (d + d,)/2. (12) 
If strong scaling holds, the inequality becomes an equality and d i  is fully equivalent to 
d,, while if strong scaling does not hold, d i  and d ,  are related by a critical point 
exponent. That the mean of a sub-group differs from the mean of the entire group is 
not surprising; what is perhaps intriguing is that as p + p c  the very large clusters 
increase in size sufficiently faster than the mean clusters that their effective dimen- 
sionality d,’ is larger (for d > 1) than the effective dimensionality d, of the system as a 
whole. 

It is straightforward to derive numerical values for dp‘ from the information given 
above and in table 1. In particular, we have d; (d )  3 d,(d), with the equality holding 

t Very recently Harrison, Bishop and Quinn (private communication, and to be published) have obtained 
expression (12) for d,’ using an elegant argument that does not explicitly involve the cluster-size scaling 
hypothesis. Moreover, they have confirmed (12) numerically for d = 2, 3 by direct computer simulation of 
large clusters near pc .  Earlier d = 2 data of Leath (1976) on smaller samples are also consistent with (12) 
(Leath interprets his data as k i n g  consistent with a fractal dimensionality of two). 
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for d = 1, and (from ( 5 ) )  

10 103 2 

21 3 7 
~ ; ( E ) = ~ - - E + - E  + . . . 

which results in the monotonic sequence dp’(E) = 4 ,  3.53, 3.09, 2.67 for d = 6, 5 ,  4 ,  3 
respectively. If strong scaling holds, then 2bh = dpf/(d -dp’) and y h  ; d i ,  while if 
strong scaling does not hold, no scaling power is given in terms of d alone. The 
‘Suzuki-renormalised’ critical ex onents, when expressed in terms of d,, are 6 = 6 = 

In conclusion, then, we have proposed an effective cluster dimensionality d ,  that 
describes the shape of the clusters (molecules) present at the percolation (gelation) 
threshold. We showed that d ,  is directly related to critical exponents and we then 
used existing information about these exponents to evaluate d,; d ,  depends only on d ,  
and 1 s d p s  d for all systems considered (with the equality holding only for d = l), 
which is consistent with the intuitive notion that the incipient gel molecule is highly 
ramified. Finally, we made connection with the scaling and extended universality 
hypotheses. In particular, we found that the inequality 1 =s d ,  s d places bounds on 
the scaling powers and certain critical exponents, and that Suzuki’s renormalised 
critical exponents all assume remarkably simple expressions when written in terms of 
d,; in particular, the mean size exponent is simply d ,  and the order parameter and 
‘decay of correlation’ exponents are simply the co-dimension d -dp. 

P 
2(d - d @ ,  + = 2d i -d ,  and 8 = d , / ( d  P -dp’). 
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